Risk of Adverse Fetal Outcomes Following Administration of a Pandemic Influenza A(H1N1) Vaccine During Pregnancy

Björn Pasternak, MD, PhD
Henrik Svanstrøm, MSc
Ditte Molgaard-Nielsen, MSc
Tyra G. Krause, MD, PhD
Hanne-Dorthe Emborg, DVM
Mads Melbye, MD, DrMedSci
Anders Hviid, MSc, DrMedSci

The 2009 influenza A(H1N1) pandemic put pregnant women at increased risk of morbidity, mortality, and poor pregnancy outcomes.1-4 Pregnant women were among the main target groups prioritized for vaccination against influenza A(H1N1)pdm09,5 and an estimated 2.4 million women were vaccinated during pregnancy in the United States alone.6 However, assessment of the fetal safety of H1N1 vaccination in pregnancy has been limited to a few pharmacovigilance reports and descriptive cohort studies.6-14

In a registry-based cohort study, we investigated whether exposure to an AS03-adjuvanted influenza A(H1N1)pdm09 vaccine during pregnancy was associated with increased risk of major birth defects, preterm birth, and fetal growth restriction.

Context Assessment of the fetal safety of vaccination against influenza A(H1N1) pdm09 in pregnancy has been limited.

Objective To investigate whether exposure to an adjuvanted influenza A(H1N1)pdm09 vaccine during pregnancy was associated with increased risk of adverse fetal outcomes.

Design, Setting, and Participants Registry-based cohort study based on all live-born singleton infants in Denmark, delivered between November 2, 2009, and September 30, 2010. In propensity score–matched analyses, we estimated prevalence odds ratios (PORs) of adverse fetal outcomes, comparing infants exposed and unexposed to an AS03-adjuvanted influenza A(H1N1)pdm09 vaccine during pregnancy.

Main Outcome Measures Major birth defects, preterm birth, and small size for gestational age.

Results From a cohort of 53,432 infants (6989 [13.1%] exposed to the influenza A(H1N1)pdm09 vaccine during pregnancy [345 in the first trimester and 6644 in the second or third trimester]), 660 (330 exposed) were included in propensity score–matched analyses of adverse fetal outcomes associated with first-trimester exposure. For analysis of small size for gestational age after second- or third-trimester exposure, 13,284 (6642 exposed) were included; for analyses of preterm birth, 12,909 (6543 exposed) were included. A major birth defect was diagnosed in 18 of 330 infants (5.5%) exposed to the vaccine in the first trimester, compared with 15 of 330 unexposed infants (4.5%) (POR, 1.21; 95% CI, 0.60-2.45). Preterm birth occurred in 31 of 330 infants (9.4%) exposed in the first trimester, compared with 24 of 330 unexposed infants (7.3%) (POR, 1.32; 95% CI, 0.76-2.31), and in 302 of 6543 infants (4.6%) with second- or third-trimester exposure, compared with 295 of 6366 unexposed infants (4.6%) (POR, 1.00; 95% CI, 0.84-1.17). Small size for gestational age was observed in 25 of 330 infants (7.6%) with first-trimester exposure compared with 31 of 330 unexposed infants (9.4%) (POR, 0.79; 95% CI, 0.46-1.37), and in 641 of 6642 infants (9.7%) with second- or third-trimester exposure, compared with 657 of 6642 unexposed infants (9.9%) (POR, 0.97; 95% CI, 0.87-1.09).

Conclusions In this Danish cohort, exposure to an adjuvanted influenza A(H1N1) pdm09 vaccine during pregnancy was not associated with a significantly increased risk of major birth defects, preterm birth, or fetal growth restriction.

METHODS

We conducted a nationwide registry-based cohort study of liveborn infants in Denmark. Individual-level data on H1N1 vaccination during pregnancy and potential confounders in cohort moth-

©2012 American Medical Association. All rights reserved.
ers were linked to the cohort using the unique personal identification number assigned to all inhabitants in Denmark. In propensity score–matched analyses, we investigated associations between H1N1 vaccination in pregnancy and risks of adverse fetal outcomes: major birth defects, preterm birth, and small size for gestational age as the primary outcomes; and secondary outcomes of low birth weight, mean difference in birth weight, and analyses according to categories of preterm birth. We additionally analyzed outcomes in the entire cohort prior to matching, although the propensity score–matched analyses were defined as primary analyses. The study was approved by the Danish Data Protection Agency. In Denmark, ethics approval is not required for registry-based research.

Cohort
On the basis of the Danish Medical Birth Register, we identified a cohort of all liveborn infants in Denmark, delivered between November 2, 2009, and September 30, 2010. The Medical Birth Register contains individual-level information on all deliveries by women living in Denmark, each newborn’s date of birth, gestational age, birth weight, and other characteristics, as well as maternal characteristics including parity, body mass index, and smoking status. Gestational age is recorded on the basis of the first day of the last menstrual period; this date is estimated by ultrasoundography in most pregnant women. In a study of the use of obstetric ultrasound scanning among pregnant women in Denmark, more than 93% underwent a scan in the year 2000. The onset of pregnancy was defined as the first day of the last menstrual period; this date is estimated by ultrasoundography in most pregnant women. We excluded multiple births; births with missing gestational age or birth weight; infants with diagnoses of chromosomal aberrations, genetic disorders, birth defect syndromes with known causes, and congenital viral infections possibly associated with birth defects (rubella, cytomegalovirus, herpes simplex, hepatitis, other viral infections including varicella, and unspecified congenital viral disease); pregnancy onset before February 1, 2009, or after December 31, 2009 (limiting inclusion of participants unlikely to receive the vaccine because pandemic vaccination occurred almost exclusively in November and December), and women vaccinated prior to pregnancy onset. Among mothers who had several births in the study period, only the first was included.

Vaccination
Information on vaccination status was obtained from a national H1N1 vaccination database established by Statens Serum Institut with the purpose of monitoring vaccination coverage, effectiveness, and safety. The only vaccine used in Denmark was the monovalent inactivated AS03-adjuvanted split virion influenza A(H1N1)pdm09 vaccine (Pandemrix, GlaxoSmithKline Biologicals). All health care clinicians administering the pandemic vaccine were mandated by law to report personal identification numbers and dates of vaccination of all vaccinees; reporting was also required for clinicians to receive reimbursement from the Danish National Health Insurance. The database is therefore considered close to complete. The pandemic influenza vaccination campaign in Denmark, starting on November 2, 2009, targeted individuals with chronic diseases, key government personnel, health care personnel, and pregnant women. For pregnant women with chronic diseases, vaccination was recommended in any trimester (in the first trimester after individual assessment). Pregnant women without comorbidities were recommended vaccination in the second and third trimester.

Outcomes
Cases of major birth defects diagnosed until 1 year of age were identified through the Danish National Patient Register, which contains individual-level data on hospital visits and admissions including diagnostic information. Major birth defects were defined according to EUROCAT (a European network for surveillance of congenital anomalies) with minor modifications as described previously. Applying this definition to detect cases from the National Patient Register, the rate of major birth defects in a nationwide cohort of live births in Denmark (2.4%) was similar to the rate reported by EUROCAT for Europe overall (2.1%). Cases of preterm birth (delivery before 37 completed weeks) and small size for gestational age (lowest 10th percentile of the gestational age-specific birth weight within the cohort) were identified on the basis of Medical Birth Register data. Very- and moderately preterm birth were defined as delivery before 32 completed weeks and delivery between the start of week 33 and before 37 completed weeks, respectively. Low birth weight was defined as less than 2500 g, and very low birth weight as less than 1500 g.

Potential Confounders
From the Medical Birth Register, the Danish Central Person Register, the National Patient Register, and the Danish National Prescription Register, we identified potential confounders for inclusion in propensity scores: maternal age, place of birth, degree of urbanization at place of living, parity, smoking status, and prepregnancy body mass index; history of any birth defects, preterm birth, spontaneous abortion, and small size for gestational age; maternal comorbidities and use of drugs. We had no data on comorbidities diagnosed exclusively in the primary care setting, inpatient drug treatment, alcohol use, over-the-counter medications, or vitamin supplements.

Statistical Analyses
For the outcome of major birth defects, the exposure time window com-
prised the first trimester (pregnancy onset through 12 gestational weeks). For all other outcomes, we aimed to analyze risks associated with exposure throughout pregnancy. Because only women with comorbidities had indication for vaccination in the first trimester, we expected that characteristics of mothers vaccinated in this time period would differ from that of mothers vaccinated in the second or third trimester. Because we also expected that the number of those exposed in the first trimester would be small, we anticipated that the comorbidity status of these mothers would not be captured adequately by a propensity score common for the entirety of pregnancy. We therefore separated the analyses into exposure time windows: vaccination in the first trimester and vaccination in the second or third trimester. Those exposed in the first trimester were excluded from analyses of the second- or third-trimester time window.

In the analyses, pregnancies contributed to follow-up from the first day of the vaccination campaign (November 2, 2009), in order for all contributing pregnancies to be at risk of vaccination. To be eligible for the analysis of a distinct exposure time window, participants were required to have follow-up during this specific time window. For example, a participant with pregnancy onset on July 1, 2009, did not start contributing follow-up to the cohort until November 2, 2009; hence, the participant did not have follow-up in the first trimester and was not eligible for the analysis of birth defects, in which pregnancies had to have follow-up in the first trimester. Additionally, participants included in the analyses of preterm birth were required to have had follow-up before 37 completed gestational weeks; else they were excluded from this analysis.

A propensity score for each participant was estimated using logistic regression as the predicted probability of vaccination conditional on all potential confounders listed previously. Additionally, all 2-way interactions between potential confounders, except for maternal comorbidities and medications, were included in the propensity scores. We used mode imputation for variables with missing values. Distinct propensity scores were estimated for first-trimester exposure and for second- or third-trimester exposure. After estimation of propensity scores, exposed and unexposed participants in each exposure time window were matched 1:1 (greedy matching) on the second decimal of the propensity score. Participants with no match were excluded from the propensity score–matched analyses.

Logistic regression was used to estimate prevalence odds ratios (PORs) with 95% CIs comparing prevalence odds of adverse fetal outcomes in the unmatched cohorts and in propensity score–matched cohorts of infants from vaccinated and unvaccinated pregnancies.25 For the analysis of mean difference in birth weight associated with vaccination in pregnancy, normal linear regression was used. In preplanned sensitivity analyses, we estimated birth defect risk associated with vaccination in the period of maximal susceptibility to teratogenic agents, 4 to 10 gestational weeks (corresponding to 2-8 weeks after estimated conception)26; estimated risks of adverse outcomes according to maternal comorbidity status in which comorbidity was defined as any of the diagnoses listed in Table 1 with the exception of disorder of female pelvic organ/genital tract and hospital contact for injury and poisoning; and estimated the risk of small size for gestational age by trimester of vaccination. Posthoc, estimates for primary outcomes were additionally adjusted for exposure to seasonal influenza vaccine (data on seasonal influenza vaccination [recommended only for pregnant women with chronic diseases] were obtained from the National Board of Health; reporting of seasonal influenza vaccination was not mandatory but necessary for cost reimbursement). A difference between groups was considered statistically significant if the 95% CI did not overlap 1.0 in either direction. SAS software (version 9.2) was used for all analyses.

RESULTS

Study Cohort

Figure 1 illustrates the enrollment of participants in the cohort. Following exclusions, a cohort of 53,432 live-born infants was identified with 6989 (13.1%) exposed to the influenza A(H1N1)pdm09 vaccine during pregnancy. Most were exposed to the vaccine in November 2009 (Figure 2); the median gestational age at the time of vaccination was 174 days (range, 0-285 days; ie, 24 weeks, 6 days). In the unmatched cohort, 345 vaccine-exposed and 22,917 unexposed participants were included in analyses of first-trimester exposure; correspondingly, there were 6644 exposed and 46,443 unexposed in analyses of second- or third-trimester exposure (Figure 1). Participants exposed in the first trimester were older, more often had a history of adverse pregnancy outcomes, had higher body mass index, were more often smokers, had higher prevalence of several comorbidities such as respiratory disease and diabetes, were more often users of prescription medications such as antidepressants and analgetics, and had more health care utilization (Table 1; Table 2). Although there were some differences in the distribution of baseline characteristics such as age between participants exposed and unexposed in the second or third trimester, these 2 groups were more similar (Table 1; Table 2). The C-statistic (an estimate of the ability of the propensity score model to predict vaccination status) was 0.81 for first-trimester exposure and 0.62 for second- or third-trimester exposure. After 1:1 propensity score matching, 660 (330 exposed) infants were included in analyses of adverse fetal outcomes associated with vaccination in the first trimester, and 13,284 (6642 exposed) in analyses of adverse fetal outcomes associated with vaccination in the second or third trimester.
Table 1. Demographics and Pregnancy History in Mothers Exposed and Unexposed to Influenza A(H1N1)pdm09 Vaccine During Pregnancya

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>First Trimester</th>
<th>Second or Third Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unexposed</td>
<td>Exposed</td>
</tr>
<tr>
<td></td>
<td>(n = 22 917)</td>
<td>(n = 345)</td>
</tr>
<tr>
<td>Age at pregnancy onset, mean (SD), y</td>
<td>30.1 (5.0)</td>
<td>30.7 (5.2)</td>
</tr>
<tr>
<td>Age group, y</td>
<td>25-34</td>
<td>222 (65)</td>
</tr>
<tr>
<td>Residential degree of urbanization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copenhagen</td>
<td>4057 (18)</td>
<td>72 (21)</td>
</tr>
<tr>
<td>Copenhagen suburbs</td>
<td>4382 (19)</td>
<td>66 (19)</td>
</tr>
<tr>
<td>Population density ≥200 inhabitants/km²</td>
<td>2596 (11)</td>
<td>48 (14)</td>
</tr>
<tr>
<td>Population density 100-199 inhabitants/km²</td>
<td>4693 (20)</td>
<td>65 (19)</td>
</tr>
<tr>
<td>Population density 50-99 inhabitants/km²</td>
<td>6074 (27)</td>
<td>78 (23)</td>
</tr>
<tr>
<td>Population density ≤49 inhabitants/km²</td>
<td>1115 (5)</td>
<td>16 (5)</td>
</tr>
<tr>
<td>Place of birth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>19 322 (84)</td>
<td>288 (83)</td>
</tr>
<tr>
<td>Europe</td>
<td>1004 (4)</td>
<td>16 (5)</td>
</tr>
<tr>
<td>Other</td>
<td>2591 (11)</td>
<td>41 (12)</td>
</tr>
<tr>
<td>Month of pregnancy onset<sup>c</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>February</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>March</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>April</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>May</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>June</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>July</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>August</td>
<td>3501 (15)</td>
<td>68 (20)</td>
</tr>
<tr>
<td>September</td>
<td>5027 (22)</td>
<td>136 (36)</td>
</tr>
<tr>
<td>October</td>
<td>5394 (24)</td>
<td>94 (27)</td>
</tr>
<tr>
<td>November</td>
<td>5059 (23)</td>
<td>47 (14)</td>
</tr>
<tr>
<td>December</td>
<td>3936 (17)</td>
<td>0</td>
</tr>
<tr>
<td>Pregnancy history</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parity 0</td>
<td>10 134 (44)</td>
<td>140 (41)</td>
</tr>
<tr>
<td>1</td>
<td>8542 (37)</td>
<td>147 (43)</td>
</tr>
<tr>
<td>2</td>
<td>3202 (14)</td>
<td>36 (10)</td>
</tr>
<tr>
<td>≥3</td>
<td>1039 (5)</td>
<td>22 (6)</td>
</tr>
<tr>
<td>Adverse pregnancy outcomes<sup>d</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spontaneous abortion</td>
<td>3629 (16)</td>
<td>70 (20)</td>
</tr>
<tr>
<td>Preterm birth</td>
<td>909 (4)</td>
<td>21 (6)</td>
</tr>
<tr>
<td>Small size for gestational age</td>
<td>1714 (7)</td>
<td>29 (8)</td>
</tr>
<tr>
<td>Any birth defect</td>
<td>1191 (5)</td>
<td>23 (7)</td>
</tr>
<tr>
<td>BMI at pregnancy onset<sup>e</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td><18.5</td>
<td>1516 (7)</td>
<td>26 (8)</td>
</tr>
<tr>
<td>18.5-24</td>
<td>14 051 (61)</td>
<td>177 (51)</td>
</tr>
<tr>
<td>25-29</td>
<td>4596 (20)</td>
<td>83 (24)</td>
</tr>
<tr>
<td>30-34</td>
<td>1816 (8)</td>
<td>31 (9)</td>
</tr>
<tr>
<td>≥35</td>
<td>938 (4)</td>
<td>28 (8)</td>
</tr>
<tr>
<td>Smoking at pregnancy onset</td>
<td>2790 (12)</td>
<td>50 (14)</td>
</tr>
</tbody>
</table>

Abbreviations: BMI, body mass index; NA, not applicable.
a Nationwide cohort of liveborn infants and their mothers in Denmark. The cohort was divided into 2 exposure time windows. All values are shown as No. (%) unless otherwise stated. Characteristics are described as current at pregnancy onset, unless stated otherwise. Because of rounding, percentages may not total 100.
b Matched 1:1 on the propensity score.
c All months of pregnancy onset are in 2009.
d BMI is calculated as weight in kilograms divided by height in meters squared.
third trimester (Figure 1). The analysis of preterm birth associated with exposure in the second or third trimester was based on 6543 exposed and 6366 unexposed infants, as those without follow-up before 37 completed weeks of gestation were excluded (Figure 1). Exposed and unexposed participants included in analyses of first-trimester exposure were reasonably well balanced with respect to baseline characteristics.
PORs were not significantly increased compared with the unexposed; the lences of any of the outcomes when trimester did not have higher prevalence in the first trimester was not significantly increased (Table 3). Vaccination was associated with a difference in birth size for gestational age (mean difference, –49 g; 95% CI, –16 to 12).

Propensity Score–Matched Analyses

In the unmatched analyses, participants with first-trimester exposure to the vaccine, when compared with the unexposed, had higher prevalences of major birth defects and preterm birth but not low birth weight and small size for gestational age (Table 3). Correspondingly, the PORs for the associations between vaccine exposure and major birth defects and preterm birth, respectively, were significantly increased (Table 3). Vaccination in the first trimester was not associated with a difference in birth weight (mean difference, –2 g; 95% CI, –16 to 12). Participants exposed to the vaccine in the second or third trimester did not have higher prevalences of any of the outcomes when compared with the unexposed; the PORs were not significantly increased for any outcome (Table 3).

Similarily, vaccination was not associated with a difference in birth weight (mean difference, –2 g; 95% CI, –16 to 12). In analyses according to category of preterm birth, there was no increased risk of moderately and very preterm birth associated with vaccination in the second or third trimester (Table 3).

There was no increased risk of low birth weight associated with vaccination in the first trimester (15 [4.5%] exposed vs 18 [5.5%] unexposed; POR, 0.83; 95% CI, 0.41–1.67; Table 3) and no increased risk of low birth weight for any outcome (Table 3). Similarly, vaccination was not associated with a difference in birth weight (mean difference, −2; 95% CI, −16 to 12).

Sensitivity Analyses

The POR for major birth defects associated with vaccination in the period of maximal susceptibility to teratogenic agents (4 to 10 gestational weeks) was similar to that in the main analysis (Table 4). In analyses according to maternal comorbidity status, the PORs for the associations between first-trimester exposure and major birth defects, second- or third-trimester exposure and preterm birth, and second- or third-trimester exposure and small size for gestational age were all similar in infants with mothers with or without comorbidities (Table 4). Because fetal growth restriction develops over some period of time, our initial analysis of small size for gestational age, which combined exposures in the second and third trimester, might not have adequately captured a risk associated with vaccination; however, when this expo-
ADVERSE FETAL OUTCOMES AFTER INFLUENZA A(H1N1) VACCINE

In propensity score–matched analyses, this cohort study found no significant associations between exposure to an AS03-adjuvanted influenza A(H1N1) pandemic vaccine and adverse outcomes among children born to women vaccinated against seasonal influenza during pregnancy. The study findings were consistent with the results of a previous cohort study of women vaccinated with the A(H1N1)pdm09 virus vaccine.

Table 2. Comorbidities, Medications, and Health Care Utilization in Mothers Exposed and Unexposed to Influenza A(H1N1)pdm09 Vaccine During Pregnancy

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Unexposed (n = 22,917)</th>
<th>Exposed (n = 345)</th>
<th>Unexposed (n = 330)</th>
<th>Exposed (n = 330)</th>
<th>Unexposed (n = 46,443)</th>
<th>Exposed (n = 6642)</th>
<th>Exposed (n = 6642)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comorbidities and medications(^a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary disease/antilobstructive inhalants</td>
<td>901 (4)</td>
<td>63 (18)</td>
<td>53 (16)</td>
<td>54 (18)</td>
<td>1709 (4)</td>
<td>399 (6)</td>
<td>394 (6)</td>
</tr>
<tr>
<td>Cardiovascular disease/cardiovascular drugs</td>
<td>637 (3)</td>
<td>21 (6)</td>
<td>24 (7)</td>
<td>17 (5)</td>
<td>1186 (3)</td>
<td>253 (4)</td>
<td>251 (4)</td>
</tr>
<tr>
<td>Hematological disease</td>
<td>199 (1)</td>
<td>5 (1)</td>
<td>4 (1)</td>
<td>5 (2)</td>
<td>392 (1)</td>
<td>88 (1)</td>
<td>77 (1)</td>
</tr>
<tr>
<td>Diabetes/anti-diabetic drugs</td>
<td>378 (2)</td>
<td>21 (6)</td>
<td>11 (3)</td>
<td>20 (6)</td>
<td>699 (2)</td>
<td>165 (2)</td>
<td>173 (3)</td>
</tr>
<tr>
<td>Neurological disease</td>
<td>488 (2)</td>
<td>19 (6)</td>
<td>27 (8)</td>
<td>17 (5)</td>
<td>1029 (2)</td>
<td>195 (3)</td>
<td>186 (3)</td>
</tr>
<tr>
<td>Liver and kidney disease</td>
<td>129 (1)</td>
<td>2 (1)</td>
<td>1 (<1)</td>
<td>2 (1)</td>
<td>267 (1)</td>
<td>52 (1)</td>
<td>57 (1)</td>
</tr>
<tr>
<td>Rheumatic disease</td>
<td>106 (<1)</td>
<td>7 (2)</td>
<td>5 (2)</td>
<td>6 (2)</td>
<td>228 (<1)</td>
<td>51 (1)</td>
<td>49 (1)</td>
</tr>
<tr>
<td>Inflammatory bowel disease/intestinal anti-inflammatory agents</td>
<td>195 (1)</td>
<td>12 (3)</td>
<td>9 (3)</td>
<td>10 (3)</td>
<td>414 (1)</td>
<td>79 (1)</td>
<td>68 (1)</td>
</tr>
<tr>
<td>Obesity</td>
<td>1145 (5)</td>
<td>24 (7)</td>
<td>35 (11)</td>
<td>23 (7)</td>
<td>2252 (5)</td>
<td>372 (6)</td>
<td>351 (5)</td>
</tr>
<tr>
<td>Immunodeficiency/immunosuppressants</td>
<td>31 (<1)</td>
<td>5 (1)</td>
<td>2 (1)</td>
<td>3 (1)</td>
<td>66 (<1)</td>
<td>23 (<1)</td>
<td>20 (<1)</td>
</tr>
<tr>
<td>Disorders of female pelvic organs/genital tract</td>
<td>2652 (12)</td>
<td>59 (17)</td>
<td>61 (18)</td>
<td>57 (17)</td>
<td>5358 (11)</td>
<td>874 (13)</td>
<td>842 (13)</td>
</tr>
<tr>
<td>Hospital contact for injury or poisoning</td>
<td>4979 (22)</td>
<td>96 (28)</td>
<td>102 (28)</td>
<td>86 (26)</td>
<td>10118 (22)</td>
<td>1388 (21)</td>
<td>1234 (21)</td>
</tr>
<tr>
<td>Antidepressants</td>
<td>1097 (5)</td>
<td>27 (8)</td>
<td>24 (7)</td>
<td>25 (8)</td>
<td>2146 (5)</td>
<td>378 (6)</td>
<td>376 (6)</td>
</tr>
<tr>
<td>Anti-epileptics</td>
<td>169 (<1)</td>
<td>2 (1)</td>
<td>4 (1)</td>
<td>2 (1)</td>
<td>275 (<1)</td>
<td>45 (1)</td>
<td>50 (1)</td>
</tr>
<tr>
<td>Drugs for peptic ulcer/gastroesophageal reflux</td>
<td>609 (3)</td>
<td>19 (6)</td>
<td>17 (5)</td>
<td>17 (5)</td>
<td>1203 (2)</td>
<td>219 (3)</td>
<td>220 (3)</td>
</tr>
<tr>
<td>Contraceptive pills</td>
<td>5557 (24)</td>
<td>74 (21)</td>
<td>60 (18)</td>
<td>72 (22)</td>
<td>10847 (23)</td>
<td>1424 (21)</td>
<td>1426 (21)</td>
</tr>
<tr>
<td>Drugs for in vitro fertilization</td>
<td>1639 (7)</td>
<td>31 (9)</td>
<td>36 (11)</td>
<td>31 (9)</td>
<td>3144 (7)</td>
<td>517 (8)</td>
<td>524 (8)</td>
</tr>
<tr>
<td>Thyroid hormones</td>
<td>216 (1)</td>
<td>5 (1)</td>
<td>8 (2)</td>
<td>4 (1)</td>
<td>465 (1)</td>
<td>89 (1)</td>
<td>96 (1)</td>
</tr>
<tr>
<td>Systemic corticosteroids</td>
<td>331 (1)</td>
<td>12 (3)</td>
<td>7 (2)</td>
<td>10 (3)</td>
<td>569 (1)</td>
<td>114 (2)</td>
<td>120 (2)</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>1987 (8)</td>
<td>36 (10)</td>
<td>34 (10)</td>
<td>32 (10)</td>
<td>3823 (8)</td>
<td>608 (9)</td>
<td>624 (9)</td>
</tr>
<tr>
<td>Opiates</td>
<td>465 (2)</td>
<td>20 (6)</td>
<td>23 (7)</td>
<td>16 (5)</td>
<td>897 (2)</td>
<td>152 (2)</td>
<td>157 (2)</td>
</tr>
<tr>
<td>Systemic antibiotic agents</td>
<td>4903 (21)</td>
<td>91 (26)</td>
<td>83 (25)</td>
<td>85 (26)</td>
<td>10355 (22)</td>
<td>1683 (25)</td>
<td>1664 (25)</td>
</tr>
<tr>
<td>Seasonal influenza vaccine(^b)</td>
<td>25 (<1)</td>
<td>216 (6)</td>
<td>19 (6)</td>
<td>19 (6)</td>
<td>27 (<1)</td>
<td>38 (1)</td>
<td>3 (<1)</td>
</tr>
<tr>
<td>Health care utilization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital admissions in the last 3 years</td>
<td>1189 (48)</td>
<td>144 (42)</td>
<td>146 (41)</td>
<td>141 (43)</td>
<td>22749 (49)</td>
<td>2393 (44)</td>
<td>2361 (45)</td>
</tr>
<tr>
<td></td>
<td>10474 (44)</td>
<td>157 (46)</td>
<td>149 (45)</td>
<td>149 (45)</td>
<td>20186 (43)</td>
<td>3121 (47)</td>
<td>3119 (47)</td>
</tr>
<tr>
<td></td>
<td>1360 (6)</td>
<td>28 (8)</td>
<td>23 (7)</td>
<td>25 (8)</td>
<td>2706 (6)</td>
<td>437 (7)</td>
<td>433 (7)</td>
</tr>
<tr>
<td></td>
<td>421 (2)</td>
<td>16 (5)</td>
<td>12 (4)</td>
<td>15 (5)</td>
<td>802 (2)</td>
<td>147 (2)</td>
<td>129 (2)</td>
</tr>
<tr>
<td>Outpatient hospital contacts in the last 3 years</td>
<td>7321 (32)</td>
<td>76 (22)</td>
<td>73 (22)</td>
<td>74 (22)</td>
<td>15014 (32)</td>
<td>1917 (29)</td>
<td>1974 (29)</td>
</tr>
<tr>
<td></td>
<td>8645 (38)</td>
<td>121 (35)</td>
<td>128 (39)</td>
<td>120 (39)</td>
<td>17588 (39)</td>
<td>2480 (37)</td>
<td>2499 (38)</td>
</tr>
<tr>
<td></td>
<td>4321 (19)</td>
<td>67 (19)</td>
<td>53 (16)</td>
<td>67 (20)</td>
<td>8671 (19)</td>
<td>1319 (20)</td>
<td>1282 (19)</td>
</tr>
<tr>
<td></td>
<td>2630 (11)</td>
<td>81 (23)</td>
<td>76 (23)</td>
<td>69 (21)</td>
<td>5170 (11)</td>
<td>928 (14)</td>
<td>987 (13)</td>
</tr>
<tr>
<td>Drugs used in the last 6 months</td>
<td>1661 (6)</td>
<td>57 (17)</td>
<td>58 (18)</td>
<td>52 (16)</td>
<td>3598 (8)</td>
<td>718 (11)</td>
<td>730 (11)</td>
</tr>
</tbody>
</table>

Abbreviation: NSAIDs, nonsteroidal anti-inflammatory drugs.
\(^a\) Nationwide cohort of liveborn infants and their mothers in Denmark. The cohort was divided into 2 exposure time windows. Characteristics are described as current at pregnancy onset, unless stated otherwise. Because of rounding, percentages may not total 100.
\(^b\) Matched 1:1 on the propensity score.
\(^c\) Comorbidities as registered in the last 3 years, and medication as registered in the last 6 months.
\(^d\) Exposure within respective time window during pregnancy.

©2012 American Medical Association. All rights reserved.
pdm09 vaccine in pregnancy and adverse fetal outcomes including major birth defects, preterm birth, and fetal growth restriction. The analyses of adverse fetal outcomes associated with vaccination in the second or third trimester of pregnancy were based on more than 6600 exposed infants, and the data provide robust evidence of

Table 3. Association Between Vaccination Against Influenza A(H1N1)pdm09 in Pregnancy and Risk of Adverse Fetal Outcomes, Nationwide Cohort of Liveborn Infants in Denmark

<table>
<thead>
<tr>
<th>Vaccination in first trimester</th>
<th>Unadjusted POR (95% CI)</th>
<th>Propensity Score–Matched Analysis</th>
<th>POR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases, No. (%)</td>
<td>Unexposed</td>
<td>Exposed</td>
<td>n = 22,917</td>
</tr>
<tr>
<td>Major birth defects</td>
<td>545 (2.4)</td>
<td>18 (5.2)</td>
<td>2.26 (1.40-3.66)</td>
</tr>
<tr>
<td>Preterm birth<sup>a</sup></td>
<td>1109 (4.8)</td>
<td>33 (9.6)</td>
<td>2.08 (1.45-2.99)</td>
</tr>
<tr>
<td>Low birth weight<sup>b</sup></td>
<td>781 (3.4)</td>
<td>15 (4.3)</td>
<td>1.29 (0.76-2.17)</td>
</tr>
<tr>
<td>Small size for gestational age<sup>c</sup></td>
<td>2268 (9.9)</td>
<td>25 (7.2)</td>
<td>0.71 (0.47-1.07)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vaccination in second or third trimester</th>
<th>Unadjusted POR (95% CI)</th>
<th>Propensity Score–Matched Analysis</th>
<th>POR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases, No. (%)</td>
<td>Unexposed</td>
<td>Exposed</td>
<td>n = 46,443<sup>d</sup></td>
</tr>
<tr>
<td>Major birth defects, alternative exposure time window</td>
<td>Vaccination in gestational weeks 4 to 10</td>
<td>330</td>
<td>15 (4.5)</td>
</tr>
<tr>
<td>Preterm birth<sup>d</sup></td>
<td>Moderately preterm</td>
<td>1803 (4.1)</td>
<td>265 (4.0)</td>
</tr>
<tr>
<td>Very preterm</td>
<td>252 (0.6)</td>
<td>38 (0.6)</td>
<td>1.03 (0.73-1.44)</td>
</tr>
<tr>
<td>Low birth weight<sup>b</sup></td>
<td>Low</td>
<td>1433 (3.1)</td>
<td>225 (3.4)</td>
</tr>
<tr>
<td>Very low</td>
<td>210 (0.5)</td>
<td>32 (0.5)</td>
<td>1.07 (0.74-1.55)</td>
</tr>
<tr>
<td>Small size for gestational age<sup>c</sup></td>
<td>4620 (9.9)</td>
<td>641 (9.6)</td>
<td>0.97 (0.89-1.05)</td>
</tr>
</tbody>
</table>

Abbreviation: POR, prevalence odds ratio.
^aPreterm birth was defined as delivery prior to 37 completed weeks, moderately preterm as between the start of week 33 and prior to 37 completed weeks, and very preterm as less than 32 completed weeks.
^bLow birth weight was defined as birth weight below 2500 g and very low birth weight below 1500 g.
^cSmall size for gestational age was defined as the lowest 10th percentile of the gestational age-specific birth weight within the cohort.
^dThe analysis of preterm birth in the unmatched cohort analysis of second- or third-trimester exposure was based on 44,505 unexposed and 65,453 exposed participants.
^eThe analysis of preterm birth in the propensity score–matched analysis of second- or third-trimester exposure was based on 63,663 unexposed and 65,433 exposed participants.

Table 4. Sensitivity Analyses of Associations Between Vaccination Against Influenza A(H1N1)pdm09 in Pregnancy and Adverse Fetal Outcomes

<table>
<thead>
<tr>
<th>Analysis</th>
<th>No. (%)</th>
<th>Unexposed</th>
<th>Exposed</th>
<th>POR (95% CI)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Major birth defects, alternative exposure time window</td>
<td>Vaccination in gestational weeks 4 to 10</td>
<td>330</td>
<td>15 (4.5)</td>
<td>215</td>
</tr>
<tr>
<td>Preterm birth<sup>d</sup></td>
<td>Moderately preterm</td>
<td>1294</td>
<td>73 (5.6)</td>
<td>1374</td>
</tr>
<tr>
<td>Very preterm</td>
<td>5072</td>
<td>222 (4.4)</td>
<td>5169</td>
<td>206 (4.0)</td>
</tr>
<tr>
<td>Small size for gestational age<sup>d</sup></td>
<td>Comorbidity</td>
<td>1352</td>
<td>135 (10.0)</td>
<td>1389</td>
</tr>
<tr>
<td>No comorbidity</td>
<td>5290</td>
<td>522 (9.9)</td>
<td>5253</td>
<td>493 (9.4)</td>
</tr>
<tr>
<td>Small size for gestational age, according to trimester of vaccination</td>
<td>Second</td>
<td>6642</td>
<td>657 (9.9)</td>
<td>3528</td>
</tr>
<tr>
<td>Third</td>
<td>6642</td>
<td>657 (9.9)</td>
<td>3114</td>
<td>325 (10.4)</td>
</tr>
<tr>
<td>Adjusted for exposure to seasonal influenza vaccine<sup>d</sup></td>
<td>Preterm birth</td>
<td>6366</td>
<td>295 (4.6)</td>
<td>6543</td>
</tr>
<tr>
<td>Small size for gestational age</td>
<td>6642</td>
<td>657 (9.9)</td>
<td>6642</td>
<td>641 (9.7)</td>
</tr>
</tbody>
</table>

Abbreviation: POR, prevalence odds ratio.
^aValues are based on propensity score–matched analyses.
^bComorbidity status is based on having a comorbidity if registered with any of the diagnoses listed in Table 2, with the exception of diagnoses of disorder of female pelvic organ/ genital tract and hospital contact for injury and poisoning.
^cFirst-trimester exposure time window.
^dSecond- or third-trimester exposure time window.
^eBecause no unexposed participants had exposure to seasonal influenza vaccine in the first trimester (Table 2), PORs could not be calculated for this time window.
ADVERSE FETAL OUTCOMES AFTER INFLUENZA A(H1N1) VACCINE

July 11, 2012—Vol 308, No. 2 173
ADVERSE FETAL OUTCOMES AFTER INFLUENZA A(H1N1) VACCINE

since 2004.33 Lastly, when interpreting results of the current study, it is important to note that it was designed to investigate safety, not effectiveness. Therefore, it did not address the question of whether maternal vaccination is associated with fetal benefits.

In conclusion, this nationwide cohort study in Denmark found no significant associations between exposure to an AS03-adjuvanted influenza A(H1N1)pdm09 vaccine in pregnancy and risk of adverse fetal outcomes including major birth defects, preterm birth, and growth restriction. Although the data provide robust evidence of safety with respect to outcomes associated with second- or third trimester exposure, results from analyses of first-trimester exposure should be viewed as preliminary and need confirmation. Further research also needs to address risk of specific birth defects as well as effectiveness of H1N1 vaccination in pregnancy.

Author Contributions: Dr Pasternak had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Pasternak, Svanström, Malgaard-Nielsen, Hvid. Acquisition of data: Svanström, Krause, Emborg, Hvid. Analysis and interpretation of data: Pasternak, Svanström, Malgaard-Nielsen, Krause, Emborg, Melbye, Hvid.

REFERENCES

17. Jørgensen P, Olsen JH. The Danish National Hospital Register: a reference document, instructions for the registration, analysis, management, and interpretation of the data; or in the preparation, review, and approval of the manuscript. Statistical analysis: Svanström, Malgaard-Nielsen, Hvid. Acquisition of data: Svanström, Krause, Emborg, Hvid. Analysis and interpretation of data: Pasternak, Svanström, Malgaard-Nielsen, Krause, Emborg, Melbye, Hvid.